
1

Understanding and Using the PHP
SplSubject/SplObserver Classes

Peter Lavin
Revised 2012-11-22

Table of Contents
1. The SplSubject Interface ... 1
2. SplObserver Interface ... 1
3. The Observer Class .. 2
4. The Subject Class .. 2
5. Main ... 3
6. Using in a Real Application .. 4
7. Code Appendix ... 4
8. About the Author .. 7

This article looks at the Observer/Subject design pattern using interfaces bundled with PHP version 5.1 and higher. This pattern
is sometimes known as a Listener pattern and is useful for facilitating communication between objects—it's a way of informing
interested parties when relevant changes have occurred. A simple example of this pattern is implemented to help understand
its use.

1. The SplSubject Interface

As implemented in PHP, the Observer/Subject pattern incorporates the SplSubject and SplObserver interfaces. The Spl prefix
standing for "Standard PHP Library". Three methods are defined in the SplSubject interface. They are as follows:

• public attach (SplObserver $observer)

• public detach (SplObserver $observer)

• public notify ()

Since the SplSubject is an interface, all its methods are public and must be defined by any class that implements it.

The purpose of the attach and detach methods is transparent; they are used to associate observers with the subject or to remove
them. Note that these methods use type hinting to ensure that only an observer object can be added or removed.

Through the attach method, the subject holds a reference to the observer. The subject can then use the notify method to inform
observers when there is a significant event or change of state in the subject.

As always with an interface, the details of implementation are left up to the individual programmer.

2. SplObserver Interface

The SplObserver interface is much simpler and defines only one method:

• public update (SplSubject $subject)

Understanding and Using the PHP
SplSubject/SplObserver Classes

2

Again, type hinting ensures that only a class that implements the subject interface can be passed in. The update method will
be invoked whenever there is an event that is of interest to observers. Since the observer has a reference to the subject, he can
query the subject for any change in state.

3. The Observer Class

The observer class is the simpler of the subject/observer pair. In the example code in this article, two observers are created,
a doctor and a derived class, the neurosurgeon. Using two observer classes gives better insight into how this design pattern
can be used.

3.1. The Doctor Class

The Doctor class represents a general practitioner. It is made up of one data member, the doctor's name, the required observer
update method and two "magic" methods. If you aren't familiar with PHP's magic methods, they are methods that are invoked
indirectly. The __contruct method is called when an object is created and the __toString method when an object is output.
The need for a constructor is readily apparent, though it is worth noting that, unlike some other object-oriented languages, a
PHP constructor does not bear the name of the class.

While constructors are usually a requirement, the __toString method need not have been implemented. It's there as a
convenience so that we can easily output the class and keep track of what is occurring. The subject class also implements a
__toString method for exactly the same reason.

The update method is used to determine the patient's health and take appropriate action.

To view the code see Figure 1, “The SplObserver Class – Doctor” [4].

3.2. Neurosurgeon Class

The Neurosurgeon class is even simpler than the Doctor class. This class has one method, the update method. Since the
Neurosurgeon is a specialized form of the Doctor class it is not surprising that its implementation of the update method overrides
the implementation of this method in the parent class.

As with any derived class, the behaviour of the derived class is similar but slightly different from the parent class. A
Neurosurgeon won't be interested when the patient's state has no bearing on its speciality, so unlike the general practitioner,
does not react when the patient gets a cold.

The neurosurgeon has all the attributes of the Doctor class, but overrides the Doctor's implementation of the update method.
The neurosurgeon only reacts when the patient gets a headache.

To view the code see Figure 2, “The Derived SplObserver Class – Neurosurgeon” [5].

4. The Subject Class

The subject is the more interesting interface given that it must implement three methods. It must implement attach and detach
methods with parameters type hinted to the SplObserver class. It must also have a notify method used to inform observers
of a change of state.

Given that patients often have more than one doctor, it makes sense to store a reference to each observer in an associative array,
declared as a class level variable, in this case the $observers variable.

This class is discussed in detail in the following sections but for a complete code listing see Figure 3, “The SplSubject Class –
Patient (part one)” [5] and Figure 4, “The SplSubject Class – Patient (part two)” [6].

4.1. Attaching an Observer

As noted, type hinting the parameter to the attach method ensures that an instance of the SplObserver class is passed in. Attempt
to pass in a class that does not implement SplObserver and a fatal error will be thrown.

Understanding and Using the PHP
SplSubject/SplObserver Classes

3

At first glance the way to attach an observer seems quite simple. To ensure that the same observer isn't added twice you might
think that the following code would suffice:

if(!in_array($o, $this->observers)){
 $this->observers[] = $o;
}

Let's see why this approach is inadequate.

4.2. Equality and Identity

The problem with using the in_array function is that two objects of the same class with the same attributes will be treated as
equal. In terms of the classes used in this example, two doctors with the same name would be treated as the same object. The
reason for this is that the in_array function tests for equality of objects not for identity, hence the need for a more long-winded
approach using the array_keys function.

The array_keys function returns an array of keys of attached observers. If two doctors with the same attributes have been
attached to a patient, it will return both of them. The identity operator, ‘===’, is able to distinguish between objects of the same
class with the same attributes.

The in_array function might suffice if you were sure that "equal" objects would never be added. However, using array_keys
and the identity operator is perhaps the more robust implementation.

Identical logic is used for detaching an observer so the detach method need not be discussed.

4.3. Other Methods and Attributes of the Patient

As an SplSubject the Patient class must implement the notify method. This method iterates over the array of observers and calls
the update method of each observer, passing a reference to the patient as an argument. Each observer is guaranteed to have an
update method because only SplObsevers can be added to the observers array and any class that implements the SplObserver
interface must implement this method.

Apart from the magic methods—which function in the same way as the magic methods of the Doctor class—the only other
methods of the Patient class set and get the state of the patient. A serious implementation of a patient class would probably want
to use a more robust way of changing the patient's state, perhaps using a setState method that stored the patient's condition in
an array. However, the two set and get methods used here serve well for simple illustrative purposes.

5. Main

The main portion of the code (see Figure 5, “Main” [7]) shows how these three classes interact. A doctor, a neurosurgeon
and a patient are created. The doctor and neurosurgeon are attached to the patient. An attempt to attach the doctor twice outputs
a message indicating that the doctor is already an observer, indicating that the attach method won't allow the same observer
to be attached twice. When the patient gets a cold, the doctor reacts by telling the patient to rest in bed. Since this is not a
neurosurgeon's area of expertise, the neurosurgeon has no response. However, when the patient gets a headache, both the doctor
and the neurosurgeon respond. Since the neurosurgeon jumps to the questionable conclusion that a mere headache requires
"brain surgery", the patient, Ivy, drops him as an observer. When the patient next gets a headache the lack of response from
the neurosurgeon shows that he is no longer an observer.

The output is displayed below:

Creating Doctor Hardcastle.
Creating Neurosurgeon Cranium.
Creating Patient Ivy.

Understanding and Using the PHP
SplSubject/SplObserver Classes

4

Adding Doctor Hardcastle as an observer.
Adding Doctor Hardcastle as an observer.
Doctor Hardcastle is already an observer.
Adding Neurosurgeon Cranium as an observer.
Patient Ivy has a cold.
 Doctor Hardcastle says, 'Rest in bed.'
Patient Ivy has a headache.
 Doctor Hardcastle says, 'Take an Aspirin.'
 Neurosurgeon Cranium says, 'This requires brain surgery'.
Neurosurgeon Cranium is no longer an observer.
Patient Ivy has a headache.
 Doctor Hardcastle says, 'Take an Aspirin.'

6. Using in a Real Application

This implementation of the observer and subject classes may not reflect a real-life programming problem, but it is illustrative
of how the subject/observer pattern might be used:

• With dependent objects – Wherever there are dependent classes the subject/observer pattern might prove useful.

• To allow different observers to respond in different ways – In the case of the patient and doctor the different observers are
members of the same class but this need not be the case. Any class can implement any interface so different classes can be
observers of the same subject. There is no requirement that all observers be members or subclasses of the same class.

• To generate an "automatic" response – You can design better classes by handing off tasks to observer classes that handle
implementation details. For example, in circumstances where you need to format output in a variety of ways, say, text, HTML
and XML, would seem to be ideal for using a subject and observers. Formatting could be handled by an output method
overridden in each observer class. The subject class can then hand over the data and let its observers worry about formatting.

7. Code Appendix

Figure 1. The SplObserver Class – Doctor

<?php
class Doctor implements SplObserver{
 protected $name;
 public function __construct($name){
 $this->name = $name;
 }
 /**
 Magic method is inherited
 */
 public function __toString(){
 return get_class($this) . " " . $this->name;
 }
 /**
 Implement the one method of SplObserver
 */
 public function update(SplSubject $s){
 if ($s->getCold()== true){
 echo " $this says, 'Rest in bed.'
";
 }
 if ($s->getHeadache()== true){
 echo " $this says, 'Take an Aspirin.'
";
 }
 }
}
?>

Understanding and Using the PHP
SplSubject/SplObserver Classes

5

Figure 2. The Derived SplObserver Class – Neurosurgeon

<?php
/**
Derived SplObserver class
*/
class Neurosurgeon extends Doctor{
 /**
 Override the inherited implementation of update
 */
 public function update(SplSubject $s){
 if ($s->getHeadache() == true){
 echo " $this
 says, 'This requires brain surgery'.
";
 }
 }
}
?>

Figure 3. The SplSubject Class – Patient (part one)

<?php
/**
* Define the Patient class
*/
class Patient implements SplSubject{
 private $name;
 /**
 Array of Observers
 */
 private $observers = array();
 /**
 Patient state variables
 */
 private $cold = false;
 private $headache = false;

 public function __construct($name){
 $this->name = $name;
 }
 public function __toString(){
 return get_class($this) . " " . $this->name;
 }
 /**
 Implement SplSubject attach method
 */
 public function attach(SplObserver $o){
 $elements = array_keys($this->observers, $o);
 $notinarray = true;
 foreach($elements as $value){
 //objects with the same attributes can be distinguished
 //using identity operator but derived class with same
 //attributes will be different
 if($o === $this->observers[$value]){
 $notinarray = false;
 break;
 }
 }
 //check if there already
 if($notinarray){
 $this->observers[] = $o;
 }else{
 echo "$o is already an observer.
";
 }
 }

Understanding and Using the PHP
SplSubject/SplObserver Classes

6

Figure 4. The SplSubject Class – Patient (part two)

 /**
 Implement SplSubject detach method
 */
 public function detach(SplObserver $o){
 //use the same logic to detach
 $elements = array_keys($this->observers, $o);
 foreach($elements as $value){
 //objects with the same attributes can be distinguished
 //using identity operator
 //but derived class with same attributes will be different
 if($o === $this->observers[$value]){
 unset($this->observers[$value]);
 echo "$o is no longer an observer.
";
 break;
 }
 }
 }

 /**
 Implement SplSubject method
 */
 public function notify(){
 foreach ($this->observers as $value){
 $value->update($this);
 }
 }
 /**
 Patient-specific set/get methods
 */
 public function setHeadache($bool){
 $this->headache = $bool;
 if ($bool == true){
 echo "$this has a headache.
";
 }
 $this->notify();
 }
 public function getHeadache(){
 return $this->headache;
 }
 public function setCold($bool){
 $this->cold = $bool;
 if ($bool == true){
 echo "$this has a cold.
";
 }
 $this->notify();
 }
 public function getCold(){
 return $this->cold;
 }
}
?>

Understanding and Using the PHP
SplSubject/SplObserver Classes

7

Figure 5. Main

<?php
include 'Patient.php';
include 'Doctor.php';
include 'Neurosurgeon.php';
$doctor = new Doctor("Hardcastle");
echo "Creating $doctor.
";
$neurosurgeon = new Neurosurgeon("Cranium");
echo "Creating $neurosurgeon.
";
$patient = new Patient("Ivy");
echo "Creating $patient.
";
$patient->attach($doctor);
//can't attach the same doctor twice
$patient->attach($doctor);
$patient->attach($neurosurgeon);
$patient->setCold(true);
$patient->setCold(false);
//patient gets a headache
$patient->setHeadache(true);
//headache gone
$patient->setHeadache(false);
//get rid of neurosurgeon
$patient->detach($neurosurgeon);
//next headache, only the doctor responds
$patient->setHeadache(true);
?>

8. About the Author

Peter Lavin is a technical writer who has been published in a number of print and online magazines. He is the author of Object
Oriented PHP, published by No Starch Press and a contributor to PHP Hacks by O'Reilly Media.

Please do not reproduce this article in whole or part, in any form, without obtaining written permission.

http://objectorientedphp.com/
http://objectorientedphp.com/
http://oreilly.com/catalog/9780596101398

8

	Understanding and Using the PHP SplSubject/SplObserver Classes
	Table of Contents
	1. The SplSubject Interface
	2. SplObserver Interface
	3. The Observer Class
	3.1. The Doctor Class
	3.2. Neurosurgeon Class

	4. The Subject Class
	4.1. Attaching an Observer
	4.2. Equality and Identity
	4.3. Other Methods and Attributes of the Patient

	5. Main
	6. Using in a Real Application
	7. Code Appendix
	8. About the Author

